Angle sensing in magnetotaxis of Magnetospirillum magneticum AMB-1.

نویسندگان

  • Xuejun Zhu
  • Xin Ge
  • Ning Li
  • Long-Fei Wu
  • Chunxiong Luo
  • Qi Ouyang
  • Yuhai Tu
  • Guanjun Chen
چکیده

The mechanism of how magnetotactic bacteria navigate along the magnetic field has been a puzzle. Two main models disagree on whether the magnetotactic behavior results from passive alignment with the magnetic field or active sensing of the magnetic force. Here, we quantitatively studied the swimming patterns of Magnetospirillum magneticum AMB-1 cells to understand the origin of their magnetotactic behaviors. Single-cell tracking and swimming pattern analysis showed that the cells follow a mixed run-reverse-tumble pattern. The average run time decreased with the angle between the cell's moving velocity and the external magnetic field. For mutant cells without the methyl-accepting chemotaxis protein (MCP) Amb0994, such dependence disappeared and bacteria failed to align with magnetic field lines. This dysfunction was recovered by complementary Amb0994 on a plasmid. At high magnetic field (>5 mT), all strains with intact magnetosome chains (including the Δamb0994-0995 strains) showed alignment with the external magnetic field. These results suggested that the mechanism for magnetotaxis is magnetic field dependent. Due to the magnetic dipole moment of the cell, the external magnetic field exerts a torque on the cell. In high magnetic fields, this torque is large enough to overcome the random re-orientation of the cell, and the cells align passively with the external magnetic field, much like a compass. In smaller (and biologically more relevant) external fields, the external force alone is not strong enough to align the cell mechanically. However, magnetotactic behaviors persist due to an active sensing mechanism in which the cell senses the torque by Amb0994 and actively regulates the flagella bias accordingly to align its orientation with the external magnetic field. Our results reconciled the two putative models for magnetotaxis and revealed a key molecular component in the underlying magneto-sensing pathway.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Siderophore production by the magnetic bacterium Magnetospirillum magneticum AMB-1.

Siderophore production by the magnetic bacterium Magnetospirillum magneticum AMB-1 is elicited by sufficient iron rather than by iron starvation. In order to clarify this unusual pattern, siderophore production was monitored in parallel to iron assimilation using the chrome azurol sulfonate assay and the ferrozine method respectively. Iron concentration lowered approximately five times less tha...

متن کامل

Characterization of aldehyde ferredoxin oxidoreductase gene defective mutant in Magnetospirillum magneticum AMB-1.

A non-magnetic mutant of Magnetospirillum magneticum AMB-1, designated as NMA21, was generated by mini-Tn5 transposon mutagenesis to identify genes involved in bacterial magnetic particle (BMP) synthesis. Alignment of the DNA sequences flanking the transposon allowed the isolation of an open reading frame (ORF2) within an operon consisting of five genes. The amino acid sequence of ORF2 showed h...

متن کامل

Comparative genome analysis of four magnetotactic bacteria reveals a complex set of group-specific genes implicated in magnetosome biomineralization and function.

Magnetotactic bacteria (MTB) are a heterogeneous group of aquatic prokaryotes with a unique intracellular organelle, the magnetosome, which orients the cell along magnetic field lines. Magnetotaxis is a complex phenotype, which depends on the coordinate synthesis of magnetosomes and the ability to swim and orient along the direction caused by the interaction with the Earth's magnetic field. Alt...

متن کامل

Design and application of a new cryptic-plasmid-based shuttle vector for Magnetospirillum magneticum.

A 3.7-kb cryptic plasmid designated pMGT was found in Magnetospirillum magneticum MGT-1. It was characterized and used for the development of an improved expression system in strain AMB-1 through the construction of a shuttle vector, pUMG. An electroporation method for magnetic bacteria that uses the cryptic plasmid was also developed.

متن کامل

Cloning of a Gene Encoding Protein Belonging to Abc Transporter Involved in Bacterial Magnetic Particle Synthesis in Magnetospirillum Magneticum Amb-1

Magnetospirillum magneticum AMB-1 synthesizes intracellular magnetic particles, magnetite (Fe3O4), enveloped by membrane called magnetosome under micro-aerobic conditions. Initial study of random transposon-based mutagenesis generated 62 nonmagnetic mutants of AMB-1 in a mini-Tn5 library. In order to identify a gene involved in bacterial magnetic particle (BMP) synthesis in the magnetic bacteri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Integrative biology : quantitative biosciences from nano to macro

دوره 6 7  شماره 

صفحات  -

تاریخ انتشار 2014